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the best of both worlds: combinable with reasoning



What is compositionality?
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Frege compositionality in formal linguistics:
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But there is also Frege’s context principle:

Never ask for word meaning in isolation, but only in the context of a sentence.

— top-down meaning flow



These Alice’s can get disambiguated by context:




The ambiguity can also intertwine grammar and meaning:
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— process theory (from dodo-book) —

A process theory consists of:
e systems S represented by wires,
e processes P represented by boxes, with systems in § as inputs/outputs,
e composition of processes, represented by wirings, resulting in a process D.
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A process theory consists of:
e systems S represented by wires,
e processes P represented by boxes, with systems in § as inputs/outputs,
e composition of processes, represented by wirings, resulting in a process D.

Could be generalised further e.g.:
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A Schrodinger compositional theory is a process theory with diagrams:

state process 1

|

process 2

e Composition is non-trivial, i.e. a whole cannot be decomposed meaningfully.

such that:

e All ingredients have clear meaningful ontological counterparts in reality.



Whitehead-compositional theory is a process theory with diagrams:

process 1

process 2

process n

such that:
¢ All ingredients have clear meaningful ontological counterparts in reality.
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Mathematics > Category Theory

[Submitted on 11 Oct 2021]

Compositionality as we see it, everywhere around us
Bob Coecke

There are different meanings of the term "compositionality” within science: what one researcher would call compositional, is not at all
compositional for another researcher. The most established conception is usually attributed to Frege, and is characterised by a bottom-up flow
of meanings: the meaning of the whole can be derived from the meanings of the parts, and how these parts are structured together.

Inspired by work on compositionality in quantum theory, and categorical quantum mechanics in particular, we propose the notions of
Schrodinger, Whitehead, and complete compositionality. Accounting for recent important developments in quantum technology and artificial
intelligence, these do not have the bottom-up meaning flow as part of their definitions.

Schrodinger compositionality accommodates quantum theory, and also meaning-as-context. Complete compositionality further strengthens
Schrodinger compositionality in order to single out theories like ZX-calculus, that are complete with regard to the intended model. All together,
our new notions aim to capture the fact that compositionality is at its best when it is "real’, "non-trivial', and even more when it also is
“complete'.

At this point we only put forward the intuitive and/or restricted formal definitions, and leave a fully comprehensive definition to future
collaborative work.
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Contra utter lack of “interpretability” for Al

Pixels of image fed as input
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Towards Compositional Interpretability for XAl
Sean Tull, Robin Lorenz, Stephen Clark, llyas Khan, Bob Coecke

Artificial intelligence (Al) is currently based largely on black-box machine learning models which lack interpretability. The field of eXplainable Al (XAl) strives to address this major
concern, being critical in high-stakes areas such as the finance, legal and health sectors.

We present an approach to defining Al models and their interpretability based on category theory. For this we employ the notion of a compositional model, which sees a model in terms
of formal string diagrams which capture its abstract structure together with its concrete implementation. This comprehensive view incorporates deterministic, probabilistic and quantum
models. We compare a wide range of Al models as compositional models, including linear and rule-based models, (recurrent) neural networks, transformers, VAEs, and causal and
DisCoCirc models.

Next we give a definition of interpretation of a model in terms of its compositional structure, demonstrating how to analyse the interpretability of a model, and using this to clarify
common themes in XAl. We find that what makes the standard 'intrinsically interpretable' models so transparent is brought out most clearly diagrammatically. This leads us to the more
general notion of compositionally-interpretable (Cl) models, which additionally include, for instance, causal, conceptual space, and DisCoCirc models.

We next demonstrate the explainability benefits of Cl models. Firstly, their compositional structure may allow the computation of other quantities of interest, and may facilitate inference
from the model to the modelled phenomenon by matching its structure. Secondly, they allow for diagrammatic explanations for their behaviour, based on influence constraints, diagram
surgery and rewrite explanations. Finally, we discuss many future directions for the approach, raising the question of how to learn such meaningfully structured models in practice.



Compositional Interpretability:

Compositional structure of the model
reflects
compositional structure of the phenomenon.



Intrinsic Quantum-Shaped:

If a phenomenon results from quantum systems.
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Effective Quantum-Shaped:

If for a phenomenon,
under well-established assumptions,
the quantum formalism is a necessary description.

These assumptions may either be:
e foundational
e engineering practice
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The ZX-calculus
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DisCoCat on Quantum Computers



The grammar/meaning-blend is exponentially expensive!
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Do it on a ‘hypothetical’ guantum computer!

arXiv.org > cs > arXiv:1608.01406
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Computer Science > Computation and Language

[Submitted on 4 Aug 2016]
Quantum Algorithms for Compositional Natural Language Processing
William Zeng (Rigetti Computing), Bob Coecke (Univesity of Oxford)

We propose a new application of quantum computing to the field of natural language processing. Ongoing work in this
field attempts to incorporate grammatical structure into algorithms that compute meaning. In (Coecke, Sadrzadeh and
Clark, 2010), the authors introduce such a model (the CSC model) based on tensor product composition. While this
algorithm has many advantages, its implementation is hampered by the large classical computational resources that it
requires. In this work we show how computational shortcomings of the CSC approach could be resolved using quantum
computation (possibly in addition to existing techniques for dimension reduction). We address the value of quantum RAM
(Giovannetti,2008) for this model and extend an algorithm from Wiebe, Braun and Lloyd (2012) into a quantum algorithm

to categorize sentences in CSC. Our new algorithm demonstrates a quadratic speedup over classical methods under certain
conditions.

Comments: In Proceedings SLPCS 2016, arXiv:1608.01018
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Do it on existing quantum computers!

arXiv.org > quant-ph > arXiv:2012.03755 Search...

Quantum Physics

[Submitted on 7 Dec 2020]
Foundations for Near-Term Quantum Natural Language Processing

Bob Coecke, Giovanni de Felice, Konstantinos Meichanetzidis, Alexis Toumi

We provide conceptual and mathematical foundations for near-term quantum natural language processing (QNLP), and do so in quantum computer scientist friendly terms.
We opted for an expository presentation style, and provide references for supporting empirical evidence and formal statements concerning mathematical generality.

We recall how the quantum model for natural language that we employ canonically combines linguistic meanings with rich linguistic structure, most notably grammar. In
particular, the fact that it takes a guantum-like model to combine meaning and structure, establishes QNLP as quantum-native, on par with simulation of quantum systems.
Moreover, the now leading Noisy Intermediate-Scale Quantum (NISQ) paradigm for encoding classical data on quantum hardware, variational quantum circuits, makes NISQ
exceptionally QNLP-friendly: linguistic structure can be encoded as a free lunch, in contrast to the apparently exponentially expensive classical encoding of grammar.
Quantum speed-up for QNLP tasks has already been established in previous work with Will Zeng. Here we provide a broader range of tasks which all enjoy the same
advantage.

Diagrammatic reasoning is at the heart of QNLP. Firstly, the guantum model interprets language as quantum processes via the diagrammatic formalism of categorical
guantum mechanics. Secondly, these diagrams are via ZX-calculus translated into quantum circuits. Parameterisations of meanings then become the circuit variables to be
learned.

Our encoding of linguistic structure within quantum circuits also embodies a novel approach for establishing word-meanings that goes beyond the current standards in
mainstream Al, by placing linguistic structure at the heart of Wittgenstein's meaning-is-context.

Comments: 43 pages, lots of pictures
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Just do it!

arXiv.org > quant-ph > arXiv:2012.03756

Quantum Physics

[Submitted on 7 Dec 2020]
Grammar-Aware Question-Answering on Quantum Computers

Konstantinos Meichanetzidis, Alexis Toumi, Giovanni de Felice, Bob Coecke

Natural language processing (NLP) is at the forefront of great advances in contemporary Al, and it is arguably one of the most challenging areas of the field. At the same time,
with the steady growth of quantum hardware and notable improvements towards implementations of quantum algorithms, we are approaching an era when quantum
computers perform tasks that cannot be done on classical computers with a reasonable amount of resources. This provides a new range of opportunities for Al, and for NLP
specifically. Earlier work has already demonstrated a potential quantum advantage for NLP in a number of manners: (i) algorithmic speedups for search-related or
classification tasks, which are the most dominant tasks within NLP, (ii) exponentially large quantum state spaces allow for accommodating complex linguistic structures, (iii)
novel models of meaning employing density matrices naturally model linguistic phenomena such as hyponymy and linguistic ambiguity, among others. In this work, we
perform the first implementation of an NLP task on noisy intermediate-scale quantum (NISQ) hardware. Sentences are instantiated as parameterised quantum circuits. We
encode word-meanings in quantum states and we explicitly account for grammatical structure, which even in mainstream NLP is not commonplace, by faithfully hard-wiring it
as entangling operations. This makes our approach to quantum natural language processing (QNLP) particularly NISQ—friendly. Our novel QNLP model shows concrete promise
for scalability as the guality of the quantum hardware improves in the near future.

Subjects: Quantum Physics (quant-ph); Computation and Language (cs.CL)
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[Submitted on 25 Feb 2021]
QNLP in Practice: Running Compositional Models of Meaning on a Quantum Computer

Robin Lorenz, Anna Pearson, Konstantinos Meichanetzidis, Dimitri Kartsaklis, Bob Coecke

Quantum Natural Language Processing (QNLP) deals with the design and implementation of NLP models intended to be run on quantum hardware. In this paper, we
present results on the first NLP experiments conducted on MNoisy Intermediate-Scale Quantum (NISQ) computers for datasets of size >= 100 sentences. Exploiting
the formal similarity of the compositional model of meaning by Coecke et al. (2010) with quantum theory, we create representations for sentences that have a
natural mapping to quantum circuits. We use these representations to implement and successfully train two NLP models that solve simple sentence classification
tasks on quantum hardware. We describe in detail the main principles, the process and challenges of these experiments, in a way accessible to NLP researchers,

thus paving the way for practical Quantum Natural Language Processing.

Subjects: Computation and Language (cs.CL); Artificial Intelligence {cs.Al); Machine Learning {cs.LG); Quantum Physics {quant-ph)
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[Submitted on 8 Oct 2021]

lambeq: An Efficient High-Level Python Library for Quantum NLP

Dimitri Kartsaklis, lan Fan, Richie Yeung, Anna Pearson, Robin Lorenz, Alexis Toumi, Giovanni de Felice, Konstantinos Meichanetzidis, Stephen Clark,
Bob Coecke

We present lambeq, the first high-level Python library for Quantum Natural Language Processing (QNLP). The open-source toolkit offers a detailed hierarchy of modules
and classes implementing all stages of a pipeline for converting sentences to string diagrams, tensor networks, and quantum circuits ready to be used on a quantum
computer. lambeq supports syntactic parsing, rewriting and simplification of string diagrams, ansatz creation and manipulation, as well as a number of compositional
models for preparing quantum-friendly representations of sentences, employing various degrees of syntax sensitivity. We present the generic architecture and describe

the most important modules in detail, demonstrating the usage with illustrative examples. Further, we test the toolkit in practice by using it to perform a number of
experiments on simple NLP tasks, implementing both classical and quantum pipelines.

Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.Al); Quantum Physics (quant-ph)
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[Submitted on 12 Aug 2024]

Quantum Algorithms for Compositional Text Processing

Tuomas Laakkonen (Quantinuum), Konstantinos Meichanetzidis (Quantinuum), Bob Coecke (Quantinuum)

Quantum computing and Al have found a fruitful intersection in the field of natural language processing. We focus on the recently proposed DisCoCirc framework for natural language,
and propose a quantum adaptation, QDisCoCirc. This is motivated by a compositional approach to rendering Al interpretable: the behavior of the whole can be understood in terms of
the behavior of parts, and the way they are put together. For the model-native primitive operation of text similarity, we derive quantum algorithms for fault-tolerant quantum computers
to solve the task of question-answering within QDisCoCirc, and show that this is BQP-hard; note that we do not consider the complexity of question-answering in other natural language
processing models. Assuming widely-held conjectures, implementing the proposed model classically would require super-polynomial resources. Therefore, it could provide a meaningful
demonstration of the power of practical quantum processors. The model construction builds on previous work in compositional quantum natural language processing. Word embeddings
are encoded as parameterized quantum circuits, and compositionality here means that the quantum circuits compose according to the linguistic structure of the text. We outline a
method for evaluating the model on near-term quantum processors, and elsewhere we report on a recent implementation of this on quantum hardware. In addition, we adapt a quantum
algorithm for the closest vector problem to obtain a Grover-like speedup in the fault-tolerant regime for our model. This provides an unconditional quadratic speedup over any classical
algorithm in certain circumstances, which we will verify empirically in future work.
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Quantum Algorithms for Text Processes

Tuomas Laakkonen, Konstantinos Meichanetzidis, Bob Coecke

Definition 1. The problem QUESTION-ANSWERING is defined as follows: given a set of word embed—
dings V, a context text T, and a set of k question texts {Q;}, determine any j such that

tr (pr(po, ®1)) —maxtr (pr(pg, ®1))| <&

where pr = Ur|0)(0|UL, po, = Up,|0)(0|U, Tl_, and Ur,Up, are the QDisCoCirc text circuits generated
from T and Q; respectively over V.

Theorem 4. Suppose that a set of word embeddings V satisfies the following:
1. The operations of V use one qubit for each input wire,

2. V contains arbitrarily many proper nouns,

3. V contains at least two adjectives that generate a dense subset of SU (2),

4. V contains at least one transitive verb that is entangling
then for any fixed € < %, QUESTION-ANSWERING is BQP-hard.
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Scalable and interpretable quantum natural language processing: an implementation on trapped ions

Tiffany Duneau, Saskia Bruhn, Gabriel Matos, Tuomas Laakkonen, Katerina Saiti, Anna Pearson, Konstantinos Meichanetzidis, Bob Coecke

We present the first implementation of text-level guantum natural language processing, a field where quantum computing and Al have found a fruitful intersection. We focus on the
QDisCoCirc model, which is underpinned by a compositional approach to rendering Al interpretable: the behaviour of the whole can be understood in terms of the behaviour of parts,
and the way they are put together. Interpretability is crucial for understanding the unwanted behaviours of Al. By leveraging the compositional structure in the model's architecture, we
introduce a novel setup which enables 'compositional generalisation': we classically train components which are then composed to generate larger test instances, the evaluation of which
asymptotically requires a quantum computer. Another key advantage of our approach is that it bypasses the trainability challenges arising in quantum machine learning. The main task
that we consider is the model-native task of question-answering, and we handcraft toy scale data that serves as a proving ground. We demonstrate an experiment on Quantinuum's H1-
1 trapped-ion quantum processor, which constitutes the first proof of concept implementation of scalable compositional QNLP. We also provide resource estimates for classically
simulating the model. The compositional structure allows us to inspect and interpret the word embeddings the model learns for each word, as well as the way in which they interact. This

improves our understanding of how it tackles the question-answering task. As an initial comparison with classical baselines, we considered transformer and LSTM models, as well as
GPT-4, none of which succeeded at compositional generalisation.
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Quantum DisCoCirc
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A question

Is Alice going in the same direction as Bob?
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d I'le > quant-ph > arXiv:2505.13208

Quantum Physics

[Submitted on 19 May 2025]
Efficient Generation of Parameterised Quantum Circuits from Large
Texts

Colin Krawchuk, Nikhil Khatri, Neil John Ortega, Dimitri Kartsaklis

Quantum approaches to natural language processing (NLP) are redefining how linguistic information is represented and
processed. While traditional hybrid quantum-classical models rely heavily on classical neural networks, recent
advancements propose a novel framework, DisCoCirc, capable of directly encoding entire documents as parameterised
qguantum circuits (PQCs), besides enjoying some additional interpretability and compositionality benefits. Following these
ideas, this paper introduces an efficient methodology for converting large-scale texts into quantum circuits using tree-
like representations of pregroup diagrams. Exploiting the compositional parallels between language and quantum
mechanics, grounded in symmetric monoidal categories, our approach enables faithful and efficient encoding of syntactic
and discourse relationships in long and complex texts (up to 6410 words in our experiments) to quantum circuits. The
developed system is provided to the community as part of the augmented open-source quantum NLP package lambeq
Gen Il

Subjects: Quantum Physics (quant-ph); Artificial Intelligence (cs.Al); Computation and Language (cs.CL)
Cite as: arXiv:2505.13208 [quant-ph]
(or arXiv:2505.13208v1 [quant-ph] for this version)
https://doi.org/10.48550/arXiv.2505.13208 0
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