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Motivation and Background

What is Quantum Channel Discrimination?

Φ0/Φ1

M

0/1

ρ

Core Idea: Given a quantum device (a black-box), it applies either channel Φ0 or Φ1.

Our task is to guess the channel by choosing input states and analyzing measurement results.

Channel discrimination is crucial for:

Fault-tolerant quantum algorithm design
Certification and benchmarking QC
Jałowiecki, K., Lewandowska, P., Pawela, Ł. (2023). PyQBench: A Python library for
benchmarking gate-based quantum computers. SoftwareX, 24, 101558.

Earliest theoretical work: single shot state discrimination, solved by Helstrom in 1969.

Recent practical experiments: Distinguishing unitary gates on IBM Q by S. Liu.

A. Bílek (VSB-TUO) z 2 / 24



Motivation and Background

What is Quantum Channel Discrimination?

Φ0/Φ1

M

0/1

ρ

Core Idea: Given a quantum device (a black-box), it applies either channel Φ0 or Φ1.

Our task is to guess the channel by choosing input states and analyzing measurement results.

Channel discrimination is crucial for:

Fault-tolerant quantum algorithm design
Certification and benchmarking QC
Jałowiecki, K., Lewandowska, P., Pawela, Ł. (2023). PyQBench: A Python library for
benchmarking gate-based quantum computers. SoftwareX, 24, 101558.

Earliest theoretical work: single shot state discrimination, solved by Helstrom in 1969.

Recent practical experiments: Distinguishing unitary gates on IBM Q by S. Liu.

A. Bílek (VSB-TUO) z 2 / 24



Motivation and Background

What is Quantum Channel Discrimination?

Φ0/Φ1

M

0/1

ρ

Core Idea: Given a quantum device (a black-box), it applies either channel Φ0 or Φ1.

Our task is to guess the channel by choosing input states and analyzing measurement results.

Channel discrimination is crucial for:

Fault-tolerant quantum algorithm design
Certification and benchmarking QC
Jałowiecki, K., Lewandowska, P., Pawela, Ł. (2023). PyQBench: A Python library for
benchmarking gate-based quantum computers. SoftwareX, 24, 101558.

Earliest theoretical work: single shot state discrimination, solved by Helstrom in 1969.

Recent practical experiments: Distinguishing unitary gates on IBM Q by S. Liu.

A. Bílek (VSB-TUO) z 2 / 24



Motivation and Background

Background of Quantum Discrimination

Originally developed for quantum state discrimination: given ρ0 or ρ1, determine which with
maximal success probability.

We only select measurement.

Extended to quantum channel discrimination: decide between two operations Φ0 and Φ1.

We choose the initial state for probing the operation as well as measurement.

Key variations and modifications:

Single-shot vs. multi-shot access
Unitary vs. general CPTP channels
Parallel, sequential, and adaptive (multi-shot) strategies

Our main motivation is to test the performance of various theoretically explored
schemes on real hardware such as IBM Q devices.
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Mathematical preliminaries

Notion of quantum state, channel and measurement

General quantum states are ρ ∈ PSD(X ) such that Trρ = 1, we denote them Ω(X ).

All linear maps Φ : L(X ) → L(Y) with property:

Φ⊗ 1lL(Z) : PSD(X ⊗ Z) → PSD(Y ⊗ Z) are called completely positive (CP).
Tr(Φ(X)) = Tr(X) are called trace preserving (TP).

Such CPTP maps are called quantum channels and we denote them C(X ,Y).

A Positive Operator-Valued Measure (POVM) P is a collection of operators
{E0, · · · , En} ⊂ PSD(X ) with property

∑n
i=0Ei = 1l.

The probability of obtaining Ei after measuring ρ is given by Born rule Tr(Eiρ).
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Mathematical preliminaries

Numerical range, arc function and diamond norm

For any operator X ∈ L(X ), the numerical range is defined as:

W(X) := {⟨x|X |x⟩ : |x⟩ ∈ X , ⟨x|x⟩ = 1}.

It is always a convex set (Hausdorff–Toeplitz theorem). For normal X, W(X) equals the convex
hull of the eigenvalues.

For unitary U ∈ L(X ), the arc function θ(U) captures the minimal arc on the unit circle
containing spec(U):

θ(U) := min
{
∆ ∈ [0, 2π) : ∃α s.t. spec(U) ⊂ {eiθ : θ ∈ [α, α+∆]}

}
.

The diamond norm ∥ · ∥⋄ for Φ : L(X ) → L(Y) is:

∥Φ∥⋄ =
∥∥Φ⊗ 1lL(X )

∥∥
1
,

where ∥Φ∥1 = max{∥Φ(X)∥1 : X ∈ L(X ),Tr(X†X) ≤ 1}
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Mathematical preliminaries

Probability of successful channel discrimination

We are given black-box quantum channel Φ which is either Φ0 or Φ1 (∈ C(X ,Y)).

To determine which was applied, we prepare an input state ρ ∈ Ω(X ⊗ Z) and perform a binary
measurement {E0, E1} ⊂ PSD(Y ⊗ Z) after applying Φ⊗ 1lL(Z).

Φ0/Φ1

M

0/1

ρ

The success probability derived from Born’s rule:

psucc =
1

2
Tr
(
E0(Φ0 ⊗ 1lL(Z))(ρ)

)
+
1

2
Tr
(
E1(Φ1 ⊗ 1lL(Z))(ρ)

)
.

By the Holevo-Helstrom theorem, psucc can be expressed using the diamond norm:

psucc =
1

2
+

1

4
∥Φ0 − Φ1∥⋄ .

The goal is to choose ρ and {E0, E1} to maximize psucc.
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Discrimination of unitary channels

Single-shot discrimination of unitary channels

Perfect discrimination is situation whenever psucc = 1.

Unitary channels are maps ΦU ∈ C(X ) for which ΦU (X) = UXU† where U ∈ L(X ) is the
unitary matrix

For unitary channels ΦU and ΦV , we can show:

∥ΦU − ΦV ∥⋄ = 2
√
1− ν2, ν = min

w∈W (V †U)
|w|

Perfect discrimination 0 ∈W (V †U) ⇔ ∃ |ψ⟩ such that ⟨ψ|V †U |ψ⟩ = 0.

At the same time 0 ∈W (V †U) ⇐⇒ θ(V †U) ≥ π

Equivalence: θ(V †U) ≥ π ⇔ 0 ∈W (V †U) ⇔ ν = 0 ⇔ ∥ΦU − ΦV ∥⋄ = 2 ⇔ psucc = 1
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Discrimination of unitary channels

Multi-shot Discrimination of Unitary Channels

If 0 < θ(V †U) < π, perfect discrimination is still possible ... just not with single shot.

The parallel strategy: apply U⊗N and compare with V ⊗N .

Arc function scales:

θ((V ⊗N )†U⊗N ) = Nθ(V †U), if Nθ(V †U) < 2π

Perfect discrimination ⇔ Nθ(V †U) ≥ π

⇒ Copies required:

N ≥
⌈

π

θ(V †U)

⌉
This guarantees 0 ∈W ((V ⊗N )†U⊗N ) ⇒ diamond norm = 2 ⇒ psucc = 1

A. Bílek (VSB-TUO) z 8 / 24



Discrimination of unitary channels

Multi-shot Discrimination of Unitary Channels

If 0 < θ(V †U) < π, perfect discrimination is still possible ... just not with single shot.

The parallel strategy: apply U⊗N and compare with V ⊗N .

U/V

U/V

...

U/V

Arc function scales:

θ((V ⊗N )†U⊗N ) = Nθ(V †U), if Nθ(V †U) < 2π

Perfect discrimination ⇔ Nθ(V †U) ≥ π

⇒ Copies required:

N ≥
⌈

π

θ(V †U)

⌉
This guarantees 0 ∈W ((V ⊗N )†U⊗N ) ⇒ diamond norm = 2 ⇒ psucc = 1

A. Bílek (VSB-TUO) z 8 / 24



Discrimination of unitary channels

Multi-shot Discrimination of Unitary Channels

If 0 < θ(V †U) < π, perfect discrimination is still possible ... just not with single shot.

The parallel strategy: apply U⊗N and compare with V ⊗N .

Arc function scales:

θ((V ⊗N )†U⊗N ) = Nθ(V †U), if Nθ(V †U) < 2π

Perfect discrimination ⇔ Nθ(V †U) ≥ π

⇒ Copies required:

N ≥
⌈

π

θ(V †U)

⌉
This guarantees 0 ∈W ((V ⊗N )†U⊗N ) ⇒ diamond norm = 2 ⇒ psucc = 1

A. Bílek (VSB-TUO) z 8 / 24



Discrimination of unitary channels

Multi-shot Discrimination of Unitary Channels

Assume for simplicity θ(V †U) = π/N , where N = w · d.
In our setup N copies of the black box Φ can be composed in the rectangle hybrid scheme,

where w is number of qubits and each qubit the unknown operation is composed d times.

Φ⊗w ◦ ΦXd−1
◦ Φ⊗w ◦ · · · ◦ ΦX1

◦ Φ⊗w

where X1, . . . , Xd−1 are arbitrary unitary matrices for mid-circuit processing.

For some U and V processing is not necessary (but optimal always exists). Then

θ(((V †U)d)⊗w) = wθ((V †U)d) = wdθ(V †U) = N
π

N
= π

Strategy types:
w = N, d = 1: Parallel
w = 1, d = N : Sequential
General w, d: Hybrid rectangular
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Discrimination of Unitary Channels on IBM Q

Discrimination of Unitary Channels on IBM Q

Experiments executed on IBM Quantum Brisbane, using circuits designed for the Eagle R3
architecture.

We consider schemes that (in theory) achieve perfect discrimination.

Circuit is divided into:

1 Discriminator – prepares state

|ψ⟩ = 1√
2
(|0⟩⊗w

+ α |1⟩⊗w
)

2 Unknown gate(s) – for example identity or RZ(ϕ)
3 Measurement – unitary transformation and measurement in comp. basis

Two discriminator and measurement implementations:

Standard CNOT-based GHZ construction (simple, but high transpilation overhead)
Optimized ECR-based version for Eagle R3 (lower gate count, better fidelity)
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Discrimination of Unitary Channels on IBM Q

Example 1.

We will distinguish between identity Φ1l and ΦRZ(ϕ) for

RZ(ϕ) =

(
e−iϕ

2 0

0 ei
ϕ
2

)

without processing between the particular application of the unitary channel.

The discriminator |ψ⟩ must satisfy ⟨ψ|RZ(dϕ)⊗w |ψ⟩ = 0 and we can show

|ψ⟩ = 1√
2
(|0 · · · 0⟩+ λ |1 · · · 1⟩) ∈ C2w

Measurement is then E0 = |ψ0⟩⟨ψ0| and E1 = 1l− E0, where |ψ0⟩ = |ψ⟩ after applying Φ1l
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Discrimination of Unitary Channels on IBM Q

Discriminator Implementations: CNOT vs. ECR

Goal: Prepare a maximally entangled GHZ-like state on w qubits:

|ψ⟩ = 1√
2

(
|0⟩⊗w + α |1⟩⊗w) .

We implemented two types of discriminator circuits to generate this:

•
H • •

•
•

Figure: 6 qubit CNOT-based
GHZ discriminator

√
X

Ecr

1

√
X

Ecr

1 0

√
X

Ecr

0 0
X

√
X

1

Ecr

0
X

√
X

1

Ecr

0

√
X

1

Figure: 6 qubit ECR-based
discriminator optimized for
Eagle R3

A. Bílek (VSB-TUO) z 12 / 24



Discrimination of Unitary Channels on IBM Q

Discriminator Implementations: CNOT vs. ECR

Goal: Prepare a maximally entangled GHZ-like state on w qubits:

|ψ⟩ = 1√
2

(
|0⟩⊗w + α |1⟩⊗w) .

We implemented two types of discriminator circuits to generate this:

•
H • •

•
•

Figure: 6 qubit CNOT-based
GHZ discriminator

√
X

Ecr

1

√
X

Ecr

1 0

√
X

Ecr

0 0
X

√
X

1

Ecr

0
X

√
X

1

Ecr

0

√
X

1

Figure: 6 qubit ECR-based
discriminator optimized for
Eagle R3

A. Bílek (VSB-TUO) z 12 / 24



Discrimination of Unitary Channels on IBM Q

Measurement Methods: Short Measurement

Short measurement is a shallow-depth circuit with reduced gate count.

CNOT-based: For the identity channel, outputs are consistently all zeros.
For ΦRZ(θ), a single bit is flipped (e.g., 001000).

ECR-based: Yields more complex disjoint bitstring sets
(e.g., {001111, ..., 010001} vs. {110001, ..., 100101}).

•
• • H

•
•

Figure: CNOT-based short measurement
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Discrimination of Unitary Channels on IBM Q

Measurement Methods: XOR Measurement

XOR measurement a deeper circuit but more noise-resilient output.

Identity yields all-zeros, ΦRZ(θ) gives all-ones.
Better error tolerance, result taken as majority bit value.
More robust to bit-flip noise, but higher circuit depth increases decoherence risk.

• •
• • H • •
• •

• •

Figure: CNOT-based XOR measurement
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Comparative analysis of transpilation

Performance of implementations: 6-Qubit System

Setup: 6-qubit experiments comparing four transpilation strategies using Short and XOR
measurement circuits.

Key Insights:
XOR measurement slightly outperforms short measurement when using ECR + Transpiler
strategy.
Manual fixed mapping offers marginal benefits in this small system size.

Transpilation Strategy
Measurement

Short XOR

CNOT + Transpiler 88.8% 86.4%

ECR + Transpiler 83.8% 90.0%

ECR + Transpiler + Fixed Map 84.4% 85.3%

ECR + Fixed Map (No Opt.) 83.3% 85.6%

Table: Accuracy of different transpilation strategies for discrimination scheme on 6-qubits obtained on
IBM Brisbane, using short and XOR measurement schemes. Each circuit was executed with 10,000
shots. Ambiguous measurement outcomes were randomly assigned.
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Comparative analysis of transpilation

Performance of implementations: 11-Qubit System

Setup: 11-qubit experiments with five transpilation strategies.

Key Insights:
Short measurement: Best result from the default ECR + Transpiler.
XOR measurement greatly benefits from topology-aware design and fixed-qubit mapping,
achieving up to 71.8% accuracy.

Transpilation Strategy
Measurement

Short XOR

CNOT + Transpiler 43.3% 48.5%

ECR + Transpiler 55.0% 54.5%

ECR (Topol.) + Transpiler 36.1% 47.2%

ECR (Topol.) + Transpiler + Fixed Map 32.0% 71.5%

ECR (Topol.) + Fixed Map (No Opt.) 33.4% 71.8%

Table: Accuracy of different transpilation strategies for discrimination scheme on 11-qubit obtained on
IBM Brisbane using short and XOR measurement schemes. Each circuit was executed with 10,000
shots. Ambiguous measurement outcomes were randomly assigned.
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Results

Impact of Circuit Structure: Sequential vs Parallel

Comparison between purely sequential and purely parallel discrimination protocols.
Goal: Distinguish between the identity and Rz(π/N) gates using Short or XOR
measurement schemes.

2 4 6 8 10 12
Number of copies

0.961

0.962

0.963

0.964

0.965

0.966

0.967

0.968

Pr
ob

ab
ili

ty

Short measurement
XOR measurement

2 4 6 8 10 12
Number of copies

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ili

ty

Short measurement
XOR measurement

Figure: (Left) Sequential scheme. (Right) Parallel scheme. Solid blue: Short; dashed red: XOR.
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Comparison between purely sequential and purely parallel discrimination protocols.
Goal: Distinguish between the identity and Rz(π/N) gates using Short or XOR
measurement schemes.
Key Observation:

Parallel circuits suffer more from noise due to entangling gates.
Sequential circuits, though deeper, maintain higher accuracy on real hardware.
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Results

Impact of Entanglement: Hybrid Schemes

Hybrid schemes blend sequential and parallel discrimination by fixing total unitary
applications N while varying the width of the scheme (qubits).
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Figure: (Left) Hybrid scheme for N = 240. (Right) Hybrid scheme for N = 1200. Solid blue: short;
dashed red: XOR.
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Results

Impact of Entanglement: Hybrid Schemes

Hybrid schemes blend sequential and parallel discrimination by fixing total unitary
applications N while varying the width of the scheme (qubits).
Key Observation:

Increased entanglement (circuit width) leads to significantly higher error rates.
Confirms that multi-qubit gate noise is the dominant error source.
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Figure: (Left) Hybrid scheme for N = 240. (Right) Hybrid scheme for N = 1200. Solid blue: short;
dashed red: XOR.
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Results

Post-Processing Correction of Bit-Flip Errors

Anomalous behavior: On IBM Brisbane, circuits with specific number of qubits exhibit
correlated bit-flip measurement errors across all qubits.
Correction: Post-processing by swapping expected labels when the success probability
drops below 0.5 restores accuracy.
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Figure: (Left) Corrected Short. (Right) Corrected XOR. Blue: original, Red: corrected.
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Post-Processing Correction of Bit-Flip Errors

Anomalous behavior: On IBM Brisbane, circuits with specific number of qubits exhibit
correlated bit-flip measurement errors across all qubits.
Correction: Post-processing by swapping expected labels when the success probability
drops below 0.5 restores accuracy.
Verification: Identical transpiled circuits executed on simulator produce perfect
discrimination and no such error is observed.
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Results

Example 2.

We will distinguish between ΦU for U =
√
X RZ(−π

2N )
√
X and ΦV for V =

√
X RZ( π

2N )
√
X,

where √
X =

1

2

(
1 + i 1− i
1− i 1 + i

)
Observation:

√
XX

√
X = 1l, hence U X U X =

√
X RZ(− π

N )
√
X.

We use hardware-friendly mid-processing Xi = X⊗w, and for convince also pre-processing
unitary operation X0 = (X

√
X)⊗w and post-processing operation Xd = (

√
XX)⊗w.

In this way, Example 2. is equivalent to Example 1.
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Results

Performance of hybrid schemes for Example 2.
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Figure: (a) Hybrid scheme for
N = 4.
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Figure: (b) Hybrid scheme for
N = 16.
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Figure: (c) Hybrid scheme for
N = 32.

Probability of successful discrimination by hybrid rectangular scheme using the short
measurement on IBM Q processor Brisbane. The blue line corresponds to no mitigation. The
red line is after error mitigation using MThree package.
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Results

Performance of hybrid schemes for Example 2.
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Figure: (a) Hybrid scheme for
N = 64.
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Figure: (b) Hybrid scheme for
N = 96.
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Figure: (c) Hybrid scheme for
N = 1024.

Probability of successful discrimination by hybrid rectangular scheme using the short
measurement on IBM Q processor Brisbane. The blue line corresponds to no mitigation. The
red line is after error mitigation using MThree package.
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Conclusion

Conclusion

We have studied the discrimination of two quantum unitary channels and benchmarked
various schemes for perfect discrimination between them.
Transpilation:

Manual mapping helped on the 11-qubit layout with XOR-based measurement.
The overall benefit is often outweighed by the complexity and time consumption of manual
mapping.

Practical Insight:
Circuit geometries beyond square layouts may offer a more accurate reflection of the
capabilities of the device
Purely parallel schemes typically perform poorly.
Purely sequential schemes work well only for a small number of copies.

Platform Anomaly:
Systematic bit-flip errors with 5+ qubits in Example 1.
Probably hardware/software issue, not circuit design.
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