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What is Quantum Channel Discrimination?

— Dy /D1

M

— 0/1

m Core ldea: Given a quantum device (a black-box), it applies either channel @, or @;.

m Our task is to guess the channel by choosing input states and analyzing measurement results.
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What is Quantum Channel Discrimination? |||||

— Dy /Py — — 0/1
p M

m Core ldea: Given a quantum device (a black-box), it applies either channel @, or @;.
m Our task is to guess the channel by choosing input states and analyzing measurement results.

m Channel discrimination is crucial for:

m Fault-tolerant quantum algorithm design

m Certification and benchmarking QC
Jatowiecki, K., Lewandowska, P., Pawela, t. (2023). PyQBench: A Python library for
benchmarking gate-based quantum computers. SoftwareX, 24, 101558.
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What is Quantum Channel Discrimination? |||||

— Dy /Py — — 0/1
p M

m Core ldea: Given a quantum device (a black-box), it applies either channel @, or @;.
m Our task is to guess the channel by choosing input states and analyzing measurement results.

Channel discrimination is crucial for:

m Fault-tolerant quantum algorithm design

m Certification and benchmarking QC
Jatowiecki, K., Lewandowska, P., Pawela, t. (2023). PyQBench: A Python library for
benchmarking gate-based quantum computers. SoftwareX, 24, 101558.

m Earliest theoretical work: single shot state discrimination, solved by Helstrom in 1969.
m Recent practical experiments: Distinguishing unitary gates on IBM Q by S. Liu.

A. Bilek (VSB-TUO) z 2/24



Background of Quantum Discrimination |||||

m Originally developed for quantum state discrimination: given py or p1, determine which with
maximal success probability.

= We only select measurement.
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m We choose the initial state for probing the operation as well as measurement.
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Motivation and Background

Background of Quantum Discrimination |||||

m Originally developed for quantum state discrimination: given pg or p;, determine which with
maximal success probability.

= We only select measurement.

m Extended to quantum channel discrimination: decide between two operations ¢ and .
m We choose the initial state for probing the operation as well as measurement.

m Key variations and modifications:

m Single-shot vs. multi-shot access
m Unitary vs. general CPTP channels
m Parallel, sequential, and adaptive (multi-shot) strategies

= Our main motivation is to test the performance of various theoretically explored
schemes on real hardware such as IBM Q devices.
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Notion of quantum state, channel and measurement |||||

m General quantum states are p € PSD(X) such that Trp = 1, we denote them 2(X).
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Mathematical preliminaries

Notion of quantum state, channel and measurement |||||

m General quantum states are p € PSD(X) such that Trp = 1, we denote them 2(X).

m All linear maps @ : L(X) — L(Y) with property:

B PRz : PSD(X ® Z) — PSD(Y ® Z) are called completely positive (CP).
B Tr(P(X)) = Tr(X) are called trace preserving (TP).

m Such CPTP maps are called quantum channels and we denote them C(X,)).
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Mathematical preliminaries

Notion of quantum state, channel and measurement |||||

m General quantum states are p € PSD(X) such that Trp = 1, we denote them 2(X).

m All linear maps @ : L(X) — L(Y) with property:

B PRz : PSD(X ® Z) — PSD(Y ® Z) are called completely positive (CP).
B Tr(P(X)) = Tr(X) are called trace preserving (TP).

m Such CPTP maps are called quantum channels and we denote them C(X,)).
m A Positive Operator-Valued Measure (POVM) P is a collection of operators

{Ey,--- ,E,} C PSD(X) with property Y. | E; = 1.
The probability of obtaining E; after measuring p is given by Born rule Tr(E;p).
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Numerical range, arc function and diamond norm |||||

m For any operator X € L(X), the numerical range is defined as:
W(X) = {{z| X |z) : |z) € X, (x|z) = 1}.

It is always a convex set (Hausdorff~Toeplitz theorem). For normal X, W(X) equals the convex
hull of the eigenvalues.
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m For any operator X € L(X), the numerical range is defined as:
W(X) = {{z| X |z) : |z) € X, (x|z) = 1}.

It is always a convex set (Hausdorff~Toeplitz theorem). For normal X, W(X) equals the convex
hull of the eigenvalues.

m For unitary U € L(X), the arc function 6(U) captures the minimal arc on the unit circle
containing spec(U):

0U) = min{A €10,27) : 3a s.t. spec(U) C {e¥ : 0 € [, a + A]}}
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Mathematical preliminaries

Numerical range, arc function and diamond norm |||||

m For any operator X € L(X), the numerical range is defined as:
WX) = {{z] X |2) : |2) € X, (z|z) = 1}.

It is always a convex set (Hausdorff~Toeplitz theorem). For normal X, W(X) equals the convex
hull of the eigenvalues.

m For unitary U € L(X), the arc function 6(U) captures the minimal arc on the unit circle
containing spec(U):

0U) = min{A €10,27) : 3a s.t. spec(U) C {e¥ : 0 € [, a + A]}}

m The diamond norm || - ||, for & : L(X) — L() is:
12lle = [|® @ T, -
where ||®[); = max{||¢(X)[|; : X € L(&X), Tr(XTX) < 1}
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Probability of successful channel discrimination |||||

m We are given black-box quantum channel @ which is either &y or &; (€ C(X,))).

m To determine which was applied, we prepare an input state p € 2(X ® Z) and perform a binary
measurement {Ey, E1} C PSD(Y ® Z) after applying @ ® 1 (z).
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Probability of successful channel discrimination |||||

m We are given black-box quantum channel @ which is either & or $; (€ C(X,))).

m To determine which was applied, we prepare an input state p € 2(X ® Z) and perform a binary
measurement {Ey, E1} C PSD(Y ® Z) after applying & @ 1 (z).

m The success probability derived from Born's rule:

1
Psucc :§TF(E0 (¢0 ® ]lL(Z))(p))

+%Tr(E1 (P ® ]lL(Z))(p))'

By the Holevo-Helstrom theorem, ps,cc can be expressed using the diamond norm:

1 1
wee = = + = ||Po — D1, .
Psucc 2+4|| 0 1||<>
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Probability of successful channel discrimination |||||

m We are given black-box quantum channel @ which is either & or $; (€ C(X,))).

m To determine which was applied, we prepare an input state p € 2(X ® Z) and perform a binary
measurement {Ey, E1} C PSD(Y ® Z) after applying & @ 1 (z).

m The success probability derived from Born's rule:

1
Psucc :§TF(E0 (¢0 ® ]lL(Z))(p))

+%Tr(E1 (P ® ﬂL(z))(P))'

By the Holevo-Helstrom theorem, ps,cc can be expressed using the diamond norm:

1 1
wee = = + = ||Po — D1, .
Psucc 2+4|| 0 1||<>

m The goal is to choose p and {Ey, F1} to maximize pgycc.
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Single-shot discrimination of unitary channels |||||

m Perfect discrimination is situation whenever pgycc = 1.

= Unitary channels are maps &1 € C(X) for which &;(X) = UXUT where U € L(X) is the
unitary matrix
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m Perfect discrimination is situation whenever pgycc = 1.

= Unitary channels are maps &1 € C(X) for which &;(X) = UXUT where U € L(X) is the
unitary matrix

m For unitary channels &y and @y, we can show:

|Pv — Pvile =2vV1—v2, v= min |w|

weW (VTU)
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Single-shot discrimination of unitary channels |||||

m Perfect discrimination is situation whenever pgycc = 1.

= Unitary channels are maps &1 € C(X) for which &;(X) = UXUT where U € L(X) is the
unitary matrix

m For unitary channels &y and @y, we can show:

|Pv — Pvile =2vV1—v2, v= min |w|

weW (VTU)

m Perfect discrimination 0 € W(VTU) < 3 |b) such that (¢| VIU |¢) = 0.
m At the same time 0 €¢ W(VTU) «— 0(ViU) > =
m Equivalence: 0(VIU) > 1< 0 W(VIU) ©v=0% ||[oy — Pvlo = 2 < Psucc = 1
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Multi-shot Discrimination of Unitary Channels |||||

m If 0 < 9(VIU) < 7, perfect discrimination is still possible ... just not with single shot.
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Multi-shot Discrimination of Unitary Channels |||||

m If 0 < 9(VTU) < 7, perfect discrimination is still possible ... just not with single shot.
m The parallel strategy: apply U®" and compare with V&V,

— UV |—

— UV |—

— UV |—
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Multi-shot Discrimination of Unitary Channels |||||

m If 0 < 9(VIU) < 7, perfect discrimination is still possible ... just not with single shot.
m The parallel strategy: apply U®" and compare with V&V,
m Arc function scales:
O((VENTUSN) = No(VTU), if NO(VTU) < 27
m Perfect discrimination < NO(VIU) >«

m = Copies required:
T
> |-
v g

m This guarantees 0 € W ((V®N)TU®N) = diamond norm = 2 = pgyec = 1

A. Bilek (VSB-TUO) z 8 /24



Multi-shot Discrimination of Unitary Channels |||||

m Assume for simplicity 0(V1U) = /N, where N = w - d.
m In our setup N copies of the black box & can be composed in the rectangle hybrid scheme,

m where w is number of qubits and each qubit the unknown operation is composed d times.
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Multi-shot Discrimination of Unitary Channels |||||

m Assume for simplicity 0(VU) = 7/N, where N = w - d.
m In our setup N copies of the black box & can be composed in the rectangle hybrid scheme,

m where w is number of qubits and each qubit the unknown operation is composed d times.

P o by, 0P o 0Py o PPV

m where X1,..., X4_1 are arbitrary unitary matrices for mid-circuit processing.

m For some U and V processing is not necessary (but optimal always exists). Then

O((VTU)E) = wb((VID)) = wdb(VIV) = N ==
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Multi-shot Discrimination of Unitary Channels |||||

m Assume for simplicity 0(VU) = 7/N, where N = w - d.
m In our setup N copies of the black box & can be composed in the rectangle hybrid scheme,

m where w is number of qubits and each qubit the unknown operation is composed d times.

P o by, 0P o 0Py o PPV

m where X1,..., X4_1 are arbitrary unitary matrices for mid-circuit processing.

m For some U and V processing is not necessary (but optimal always exists). Then

O((VTU)E) = wb((VID)) = wdb(VIV) = N ==

m Strategy types:
m w= N,d=1: Parallel
m w=1,d = N: Sequential
m General w, d: Hybrid rectangular
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Discrimination of Unitary Channels on IBM Q |||||

m Experiments executed on IBM Quantum Brisbane, using circuits designed for the Eagle R3
architecture.

m We consider schemes that (in theory) achieve perfect discrimination.
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Discrimination of Unitary Channels on IBM Q

m Experiments executed on IBM Quantum Brisbane, using circuits designed for the Eagle R3
architecture.
m We consider schemes that (in theory) achieve perfect discrimination.

m Circuit is divided into:
Discriminator — prepares state
1
¥) = —= (100" + a[1)®")

V2

Unknown gate(s) — for example identity or RZ(¢)
Measurement — unitary transformation and measurement in comp. basis
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Discrimination of Unitary Channels on IBM Q |||||

m Experiments executed on IBM Quantum Brisbane, using circuits designed for the Eagle R3
architecture.

m We consider schemes that (in theory) achieve perfect discrimination.
m Circuit is divided into:
Discriminator — prepares state
1
) = E(

Unknown gate(s) — for example identity or RZ(¢)
Measurement — unitary transformation and measurement in comp. basis

0)%" +a|1)*")

m Two discriminator and measurement implementations:

m Standard CNOT-based GHZ construction (simple, but high transpilation overhead)
m Optimized ECR-based version for Eagle R3 (lower gate count, better fidelity)
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Discrimination of Unitary Channels on IBM Q
Example 1. |||||

m We will distinguish between identity @1 and ®rz(y) for

without processing between the particular application of the unitary channel.
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Discrimination of Unitary Channels on IBM Q
Example 1. |||||

m We will distinguish between identity @1 and ®rz(y) for

,i%
RZ(¢) = (e 0 e?g)

without processing between the particular application of the unitary channel.

m The discriminator [¢) must satisfy ()| RZ(d¢)®™ |[¢) = 0 and we can show

1 -
|¢>:W(|0~-~0>+,\|1~-~1>)e<c
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Discrimination of Unitary Channels on IBM Q

Example 1. |||||

m We will distinguish between identity @1 and ®rz(y) for

,i%
RZ(¢) = (e 0 e?g)

without processing between the particular application of the unitary channel.

m The discriminator [¢) must satisfy ()| RZ(d¢)®™ |[¢) = 0 and we can show

1 -
|¢>:W(|0~-~0>+,\|1~-~1>)e<c

m Measurement is then Ey = o) to| and Ey = 1 — Ey, where |t¢g) = |¢) after applying &,
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Discriminator Implementations: CNOT vs. ECR |||||

Goal: Prepare a maximally entangled GHZ—Iike state on w qubits:

¥) = ﬁ (100" +a 1))
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Discrimination of Unitary Channels on IBM Q

Discriminator Implementations: CNOT vs. ECR |||||

Goal: Prepare a maximally entangled GHZ—Iike state on w qubits:

(|o>®w + a1,

We implemented two types of discriminator circuits to generate this:
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Figure: 6 qubit ECR-based
discriminator optimized for
Eagle R3

Figure: 6 qubit CNOT-based
GHZ discriminator
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Measurement Methods: Short Measurement |||||

Short measurement is a shallow-depth circuit with reduced gate count.
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Measurement Methods: Short Measurement |||||

Short measurement is a shallow-depth circuit with reduced gate count.
m CNOT-based: For the identity channel, outputs are consistently all zeros.
For @rz(), a single bit is flipped (e.g., 001000).
m ECR-based: Yields more complex disjoint bitstring sets
(e.g., {001111,...,010001} vs. {11001, ...,100101}).
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Measurement Methods: Short Measurement |||||

Short measurement is a shallow-depth circuit with reduced gate count.
m CNOT-based: For the identity channel, outputs are consistently all zeros.
For @rz(), a single bit is flipped (e.g., 001000).
m ECR-based: Yields more complex disjoint bitstring sets
(e.g., {001111,...,010001} vs. {11001, ...,100101}).
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Figure: CNOT-based short measurement
Figure: ECR-based short measurement
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Measurement Methods: XOR Measurement |||||

XOR measurement a deeper circuit but more noise-resilient output.
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Measurement Methods: XOR Measurement |||||

XOR measurement a deeper circuit but more noise-resilient output.
m Identity yields all-zeros, ®rz(s) gives all-ones.
m Better error tolerance, result taken as majority bit value.

m More robust to bit-flip noise, but higher circuit depth increases decoherence risk.
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Measurement Methods: XOR Measurement |||||

XOR measurement a deeper circuit but more noise-resilient output.
m Identity yields all-zeros, ®rz(s) gives all-ones.
m Better error tolerance, result taken as majority bit value.

= More robust to bit-flip noise, but higher circuit depth increases decoherence risk.

Ecr Eer

L |

Ecr Eer

% %

Figure: CNOT-based XOR measurement

Figure: ECR-based XOR measurement
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Performance of implementations: 6-Qubit System |||||

m Setup: 6-qubit experiments comparing four transpilation strategies using Short and XOR
measurement circuits.
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Comparative analysis of transpilation

Performance of implementations: 6-Qubit System |||||

m Setup: 6-qubit experiments comparing four transpilation strategies using Short and XOR

measurement circuits.
m Key Insights:
m XOR measurement slightly outperforms short measurement when using ECR + Transpiler
strategy.
m Manual fixed mapping offers marginal benefits in this small system size.

._ Measurement Short | XOR
Transpilation Strategy
CNOT + Transpiler 88.8% | 86.4%
ECR + Transpiler 83.8% | 90.0%
ECR + Transpiler + Fixed Map 84.4% | 85.3%
ECR + Fixed Map (No Opt.) 83.3% | 85.6%

Table: Accuracy of different transpilation strategies for discrimination scheme on 6-qubits obtained on
IBM Brisbane, using short and XOR measurement schemes. Each circuit was executed with 10,000

shots. Ambiguous measurement outcomes were randomly assigned.
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Performance of implementations: 11-Qubit System |||||

m Setup: 11-qubit experiments with five transpilation strategies.
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Comparative analysis of transpilation

Performance of implementations: 11-Qubit System |||||

m Setup: 11-qubit experiments with five transpilation strategies.

m Key Insights:
= Short measurement: Best result from the default ECR + Transpiler.
= XOR measurement greatly benefits from topology-aware design and fixed-qubit mapping,
achieving up to 71.8% accuracy.

Measurement
Transpilation Strategy Short | XOR
CNOT + Transpiler 43.3% | 48.5%
ECR + Transpiler 55.0% | 54.5%
ECR (Topol.) + Transpiler 36.1% | 47.2%
ECR (Topol.) + Transpiler + Fixed Map 32.0% | 71.5%
ECR (Topol.) + Fixed Map (No Opt.) 33.4% | 71.8%

Table: Accuracy of different transpilation strategies for discrimination scheme on 11-qubit obtained on
IBM Brisbane using short and XOR measurement schemes. Each circuit was executed with 10,000

shots. Ambiguous measurement outcomes were randomly assigned.
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Impact of Circuit Structure: Sequential vs Parallel

m Comparison between purely sequential and purely parallel discrimination protocols.

m Goal: Distinguish between the identity and R.(7/N) gates using Short or XOR

measurement schemes.
0.968 1.0
,'“\ —e— Short measurement . —e— Short measurement
0.967 F-— ,' —=- XOR measurement 0.9 —=- XOR measurement
1
]
0.966 i 08
]
) ) 0.7
= 0.965 ! E
g ] .-g 0.6
.g 0.964 Q
2 E 0.5
0.963 0.4
0.962 0.3
0.961 0.2
6 8 10 12 2 4 6 8 10 12
Number of copies

4

Number of copies

Figure: (Left) Sequential scheme. (Right) Parallel scheme. Solid blue: Short; dashed red: XOR.
17 / 24
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JReis
Impact of Circuit Structure: Sequential vs Parallel |||||

m Comparison between purely sequential and purely parallel discrimination protocols.
m Goal: Distinguish between the identity and R.(7/N) gates using Short or XOR
measurement schemes.
= Key Observation:
m Parallel circuits suffer more from noise due to entangling gates.
m Sequential circuits, though deeper, maintain higher accuracy on real hardware.

0.968 1.0
- —e— Short measurement
0.967 0.9 S -=- XOR measurement
0.966 0-8
2 207
E‘ 0.965 =
3 % 0.6
.-g 0.964 Q
& E 0.5
0.963 04
0.962 03
0.961 0.2
2 4 6 8 10 12 2 4 6 8 10 12
Number of copies Number of copies
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T
Impact of Entanglement: Hybrid Schemes |||||

m Hybrid schemes blend sequential and parallel discrimination by fixing total unitary
applications NV while varying the width of the scheme (qubits).

1.0 1.0

—u —e— Short measurement —e— Short measurement
0.9 S —=- XOR measurement 0.9 S —=- XOR measurement
0.8 0.8

Probability
o
(=2}
Probability
o
(=2}

0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
2 4 6 8 10 12 2 4 6 8 10 12
Number of qubits Number of qubits

Figure: (Left) Hybrid scheme for N = 240. (Right) Hybrid scheme for N = 1200. Solid blue: short;
dashed red: XOR.
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T
Impact of Entanglement: Hybrid Schemes |||||

= Hybrid schemes blend sequential and parallel discrimination by fixing total unitary
applications N while varying the width of the scheme (qubits).
m Key Observation:
m Increased entanglement (circuit width) leads to significantly higher error rates.
m Confirms that multi-qubit gate noise is the dominant error source.

1.0 1.0

— —e— Short measurement —e— Short measurement

0.9 S —=- XOR measurement 0.9 s —=- XOR measurement
0.8 0.8
207 207
% 0.6 % 0.6

Q Q

n% 0.5 E 0.5
0.4 0.4
0.3 0.3
0.2 0.2

2 4 10 12 2 4 10 12

6 8 6 8
Number of qubits Number of qubits
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JReis
Post-Processing Correction of Bit-Flip Errors |||||

= Anomalous behavior: On IBM Brisbane, circuits with specific number of qubits exhibit
correlated bit-flip measurement errors across all qubits.
m Correction: Post-processing by swapping expected labels when the success probability
drops below 0.5 restores accuracy.
1.0 1.0

—e— Short measurement —e— XOR measurement
0.9 -~ Short measurement corrected 0.9 —®- XOR measurement corrected

Probability
Probability
=]
(=]

2 4 8 10 12 2 4 8 10 12

6 6
Number of copies Number of copies

Figure: (Left) Corrected Short. (Right) Corrected XOR. Blue: original, Red: corrected.
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JReis
Post-Processing Correction of Bit-Flip Errors |||||

= Anomalous behavior: On IBM Brisbane, circuits with specific number of qubits exhibit
correlated bit-flip measurement errors across all qubits.

m Correction: Post-processing by swapping expected labels when the success probability
drops below 0.5 restores accuracy.

m Verification: Identical transpiled circuits executed on simulator produce perfect
discrimination and no such error is observed.

1.0 1.0
—e— Short measurement —s— XOR measurement
0.9 —=- Short measurement corrected 0.9 —=- XOR measurement corrected
0.8 0.8
>0.7
E=) %0.7
= =
Fos 3
g So6
205 2
% A0.5
0.4
0.4
0.3
0.2 0.3
2 4 6 8 10 12 2 4 6 8 10 12
Number of copies Number of copies
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T
Example 2. |||||

m We will distinguish between &y for U = \/_RZ (377) \/_ and @y for V = \/_RZ (5%) \/)_(

where )
1144 1
ﬁ_i(l—i 1+i)

= Observation: vX XX =1, hence UXU X = \/YRZ(—%) VX,
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Example 2. |||||

m We will distinguish between &y for U = \/_RZ (377) \/_ and @y for V = \/_RZ (5%) \/)_(

where )
1144 1
ﬁ_§<1—i 1+¢)

= Observation: vX XX =1, hence UXU X = \/YRZ(—%) VX,

m We use hardware-friendly mid-processing X; = X®%, and for convince also pre-processing
unitary operation Xy = (X+/X)®¥ and post-processing operation X = (v X X)®¥.

m In this way, Example 2. is equivalent to Example 1.
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Performance of hybrid schemes for Example 2.

Probability

—e— Raw results

Probability

—e— Mitigated results
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Figure: (a) Hybrid scheme for
N =4

Figure: (b) Hybrid scheme for

N = 16.
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Figure: (c) Hybrid scheme for
N = 32.

Probability of successful discrimination by hybrid rectangular scheme using the short
measurement on IBM Q processor Brisbane. The blue line corresponds to no mitigation. The

red line is after error mitigation using MThree package.
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Performance of hybrid schemes for Example 2. |||||
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Figure: (a) Hybrid scheme for ~ Figure: (b) Hybrid scheme for  Figure: (c) Hybrid scheme for
N = 64. N = 96. N =1024.

Probability of successful discrimination by hybrid rectangular scheme using the short
measurement on IBM Q processor Brisbane. The blue line corresponds to no mitigation. The
red line is after error mitigation using MThree package.
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Conclusion |||||

= We have studied the discrimination of two quantum unitary channels and benchmarked
various schemes for perfect discrimination between them.
m Transpilation:

m Manual mapping helped on the 11-qubit layout with XOR-based measurement.
m The overall benefit is often outweighed by the complexity and time consumption of manual
mapping.
m Practical Insight:
m Circuit geometries beyond square layouts may offer a more accurate reflection of the
capabilities of the device
m Purely parallel schemes typically perform poorly.
m Purely sequential schemes work well only for a small number of copies.
m Platform Anomaly:

m Systematic bit-flip errors with 5+ qubits in Example 1.
m Probably hardware/software issue, not circuit design.
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