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Are Quantum Computers Useful for ML?

Dequantization: To find efficient classical ML algorithms that work
as well as quantum algorithms (in terms of true risk)

QML models have Fourier representations! = RFF (Landman et al.)

Problem m“ Landman, Jonas, et al. "Classically

approximating variational quantum machine

Regression learning with random Fourier features." arXiv
reprint arXiv:2210.13200 (2022).
w (Sweke et al.) ?? brep (2022)
Sweke, Ryan, et al. "Potential and limitations of
SVM random Fourier features for dequantizing quantum

machine learning."” Quantum 9 (2025): 1640.
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Summary of Results

Thobem | o |

Regression

\w%\

= Alignment:
Pw % |kl -
e Concentration:
Pmax€ O(poly(d))

SVM

= Alignment:
Po € |Col
m Bounded Fourier
Sum:

2lcy| € O(poly(d))

= Alignment:

VP~ Ve € owoty@
e Concentration:

Pmax€ O(poly(d))
m Bounded RKHS norm:

Ifall,,, € 0@oly(@))

o Alignment:
1
Pw = EVQw

e Concentration:

C= ) Via € O@oly(d))
wE)
m Bounded RKHS norm:

”fq”kQ € O(poly(d))



Outline

* Background
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e Approximation of Quantum Kernels
* RFF-Dequantization QML

* Numerical Experiments
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[1] Sweke, Ryan, et al. "Potential and limitations of random Fourier features for dequantizing quantum machine learning." Quantum 9 (2025): 1640.



Feature Maps

Feature maps are used to make data easier to work with.

Quantum Feature Maps, PennyLane tutorials.
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Kernel Method

* Some ML algorithm can be reframed to only require inner product of
feature map for pairs of datai.e. (¢p(x), p(y)).

Definition: A kernel is a function that can be written as the
inner product of feature mapsi.e. k(x,y) = (¢p(x), d(y))

* The kernel trick: Using a kernel we already know has a complicated
feature map e.g. the Gaussian kernel.

(x—y)*
)
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Quantum Neural Networks (QNNs)

 Layers of encoding and parametrized gates

fo(x) = Tr[U(x, 0)|0)0|UT(x,0) 0]

L
U(x,0) = 1_[ W,(0)V, (x)
=1
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Quantum Kernels (QKs)

* Fidelity Quantum Kernels (with pure state encoding)

ko(x,¥) = Trlp(x)p(y)]

p(x) = U(x)|0){0|UT (x)

R| (BB R
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Hamiltonian Encoding

* Encoding gates U(x) = exp(ixH) , H a Hermitian operator.

* For QNNSs: fg(x) = X cq Cope'®*
* For QKs: ko (x,y) = X ven Q,,, e @*¥=vy)

|Q}] is exponential in the dimension of input data!l ®

What if we only consider some of these frequencies?

Schuld, Maria. "Supervised quantum machine learning models are kernel methods." arXiv preprint arXiv:2101.11020 (2021).

Schuld, Maria, Ryan Sweke, and Johannes Jakob Meyer. "Effect of data encoding on the expressive power of variational
guantum-machine-learning models." Physical Review A 103.3 (2021): 032430.
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Random Fourier Features it s e o e e .
* The goal is to find an approximate feature map for a kernel.
e Shift-invariant kernels: k(x,y) = g(x — y)

* Bochner’s theorem: if p is the Fourier transform of g,
k(x,y) = Egyoplcos(w - (x —y))]

i.e. the Fourier transform of a SI kernel, is positive.



Random Fourier Features k(x,y) = Eq_plcos w(x — )]

* Replace expectation with sample mean:

kG, y) = ¢ ,(0) dp ()

w;’s are i.i.d samples of p,

$pp(x) = [cos(a)1 x),sin(wq - x), -, cos(wp - x), sin(wp - x)]"

2
D €} (:—Zlog (E[”wHZ])) samples are enough for € point-wise error
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How to apply this to QKs?

Approximation Dequantization

ko — ki [R[f,] — RIf]]




QKs are not shift invariant!

Approximation

ko — k|

kQ (x, Y) — Zw,vEQ Qwvei(a)-x—v-y) — Z(X)TQZ()/)

Z(x) — [eiwl-x’ m’eiwm-x]T

Diagonal Q - Sl kernel

Q is generally not diagonal!
RFF Approximation Does NOT WORK!
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Random Features for QKs ko(x,y) = z(x)TQz(y)

Key Idea: Write kq(x,y) = Ey [t/ﬂL(x, N)Y(y, N)] and estimate with
sample mean

( is Hermitian, unit-trace and positive semi-definite

Diagonal elements of Q Eigenvalues of Q form a
form a distribution g distribution v

ko(x,y) = X viz(0) tuul z(y)
Wy, N)




Error Bounds

2
Error Bound: D € O (dlﬂl log (EN[GN])) samples are enough for €

point-wise error

Computational Complexity of this approach

* FFT takes O(|Q|log |

* EVD takes O(poly(|Q])) Bad News!!
* Number of samples scale with ||?




Error Bounds

2
Error Bound: D € O (dlﬂl log (IENKN])) samples are enough for €

point-wise error

Computational Complexity of this approach

* FFT takes O(|Q|log |

* EVD takes O(poly(|Q]))
* Number of samples scale with ||?

Approximation

kg — Kl

Inefficient!!
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RFF-Dequantization

Can RFF feature map perform as well as quantum models in
learning tasks?

\ pproximat Dequantization

[RI[fg] — RIf]]
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=
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RFF-Dequantization

Dequantization

|RIf,] - RIf]|

Definition: A QML task is RFF-dequantized if there exists a
distribution p such that ¢p ,,(x) reaches true risks at most €
greater than optimum true risk of the QML model, with
O(poly(d, e ! )) frequency and data samples.

¢D,p (x) —

[cos(wq - x),sin(w; - x), -+, cos(wp - x),sin(wp - x)]"

L
VD



Summary
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Limitations of Theoretical Approach

* The optimal QNN function, is not obtainable.
* Computational complexity of Fourier transform is high.
e Optimal sampling distribution may be hard to sample from.

Theoretically dequantizable does not mean you can
actually find the proper distribution.

Does RFF with simple sampling strategies work as well?




Numerical Experiments

 RFF-SVM: Sampling Strategies
e Uniform
e Convolutional
* Truncated

Truncated
Convolutional

Amplitude




Numerical Experiments

[ Data Set fro m pa rt|C I e COI | |S | O n S Belis, Vasilis, et al. "Quantum anomaly detection in the latent space of proton

collision events at the LHC." Communications Physics 7.1 (2024): 334.

* Dimension 64
 Comparison of sampling methods



Numerical Experiments

[ Data Set fro m pa rt|C I e COI | |S | O n S Belis, Vasilis, et al. "Quantum anomaly detection in the latent space of proton

collision events at the LHC." Communications Physics 7.1 (2024): 334.

* Dimension 64

: . 1.01
* Comparison of samplir
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True Risk Estimate
o
o

Uniform

10! 102 103 10
Frequency Samples
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Numerical Experiment

* QK-SVM Settings:

* Feature map

* QK evaluated for pairs of data
* Shot noise added as a binomial RV
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Numerical Experiment

100 ,

* Dimension 32 -

* 1000 training
< === (QSVM, Exact
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Conclusion

Alignment and concentration appear as sufficient conditions for QK methods
and SVM

Obtaining the optimal RFF sampling distribution is hard.

But simple, task independent distributions such as convolutional and
truncated may be good options.



Thank you! ©

Questions?
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