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Are Quantum Computers Useful for ML?

QML models have Fourier representations! → RFF  (Landman et al.)
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Problem QNN QK

Regression

(Sweke et al.) ??

SVM

?? ??

Dequantization: To find efficient classical ML algorithms that work 
as well as quantum algorithms (in terms of true risk)

Sweke, Ryan, et al. "Potential and limitations of 

random Fourier features for dequantizing quantum 
machine learning." Quantum 9 (2025): 1640.

Landman, Jonas, et al. "Classically 

approximating variational quantum machine 

learning with random Fourier features." arXiv 
preprint arXiv:2210.13200 (2022).



Summary of Results
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Problem QNN QK

Regression

 Alignment:
 𝑝𝜔 ∝  |𝑐𝜔

⋆ | . 
● Concentration:

 𝑝𝑚𝑎𝑥∈  𝒪(𝑝𝑜𝑙𝑦(𝑑))
  

 Alignment:  

𝑃
−1

𝑄
∞

∈  𝒪(𝑝𝑜𝑙𝑦(𝑑))

● Concentration:
 𝑝𝑚𝑎𝑥∈  𝒪(𝑝𝑜𝑙𝑦(𝑑))
■ Bounded RKHS norm: 

𝑓𝑞 𝑘𝑄
∈  𝒪(𝑝𝑜𝑙𝑦(𝑑))

SVM

 Alignment:
 𝑝𝜔 ∝  |𝑐𝜔

⋆ |
■ Bounded Fourier 

Sum: 
σ 𝑐𝜔 ∈ 𝒪(𝑝𝑜𝑙𝑦(𝑑))  

 Alignment: 

𝑝𝜔 =
1

𝐶
𝑞𝜔 

● Concentration: 

C = ෍

𝜔∈Ω

𝑞𝜔 ∈  𝒪(𝑝𝑜𝑙𝑦(𝑑))

■ Bounded RKHS norm: 

𝑓𝑞 𝑘𝑄
∈  𝒪(𝑝𝑜𝑙𝑦(𝑑))



Outline 

• Background

• Main Results
• Approximation of Quantum Kernels 

• RFF-Dequantization QML

• Numerical Experiments

• Conclusion 
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[1] Sweke, Ryan, et al. "Potential and limitations of random Fourier features for dequantizing quantum machine learning." Quantum 9 (2025): 1640.



Feature Maps  

Feature maps are used to make data easier to work with. 
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Quantum Feature Maps, PennyLane tutorials. 
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Kernel Method 

• Some ML algorithm can be reframed to only require inner product of 
feature map for pairs of data i.e. 𝜙 𝑥 , 𝜙(𝑦) .

• The kernel trick: Using a kernel we already know has a complicated 
feature map e.g. the Gaussian kernel.

𝑘 𝑥, 𝑦 = exp(−
𝑥−𝑦 2

2𝜎2 ) 

8

Definition: A kernel is a function that can be written as the 
inner product of feature maps i.e. 𝑘 𝑥, 𝑦 = 𝜙 𝑥 , 𝜙(𝑦)



Quantum Neural Networks (QNNs)

• Layers of encoding and parametrized gates

𝑓𝜃 𝑥 = Tr[𝑈 𝑥, 𝜃 |0⟩⟨0|𝑈† 𝑥, 𝜃  ෠𝑂]

𝑈(𝑥, 𝜃)  = ෑ

𝑙=1

𝐿

𝑊𝑙 𝜃 𝑉𝑙(𝑥)
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Quantum Kernels (QKs)

• Fidelity Quantum Kernels (with pure state encoding) 

𝑘𝑄 𝑥, 𝑦 = Tr 𝜌 𝑥 𝜌 𝑦

𝜌 𝑥 = 𝑈 𝑥 |0⟩⟨0|𝑈†(𝑥)
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Hamiltonian Encoding 

• Encoding gates 𝑈 𝑥 = exp 𝑖𝑥𝐻  , 𝐻 a Hermitian operator.

• For QNNs: 𝑓𝜃 𝑥 = σ𝜔∈Ω 𝑐𝜔𝑒𝑖𝜔𝑥

• For QKs: 𝑘𝑄 𝑥, 𝑦 =  σ𝜔,𝜈∈Ω 𝑄𝜔𝜈𝑒𝑖(𝜔𝑥−𝜈𝑦)
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Ω  is exponential in the dimension of input data! 

What if we only consider some of these frequencies? 

Schuld, Maria. "Supervised quantum machine learning models are kernel methods." arXiv preprint arXiv:2101.11020 (2021).

Schuld, Maria, Ryan Sweke, and Johannes Jakob Meyer. "Effect of data encoding on the expressive power of variational 
quantum-machine-learning models." Physical Review A 103.3 (2021): 032430.



Random Fourier Features

• The goal is to find an approximate feature map for a kernel.

 

• Shift-invariant kernels:   𝑘 𝑥, 𝑦 = 𝑔(𝑥 − 𝑦)

• Bochner’s theorem: if 𝑝 is the Fourier transform of 𝑔,

𝑘 𝑥, 𝑦 =  𝔼𝜔∽𝑝 cos(𝜔 ⋅ 𝑥 − 𝑦 )  
 

i.e. the Fourier transform of a SI kernel, is positive. 
 

12

Rahimi, Ali, and Benjamin Recht. "Random features for large-scale kernel 
machines." Advances in neural information processing systems 20 (2007).



Random Fourier Features

• Replace expectation with sample mean: 
෠𝑘 𝑥, 𝑦 = 𝜙𝐷,𝑝

† 𝑥  𝜙𝐷,𝑝 𝑦

𝜔𝑖’s are i.i.d samples of 𝑝,  

𝜙𝐷,𝑝 𝑥 =
1

𝐷
cos 𝜔1 ⋅ 𝑥 , sin 𝜔1 ⋅ 𝑥 , ⋯ , cos 𝜔𝐷 ⋅ 𝑥 , sin 𝜔𝐷 ⋅ 𝑥 𝑇 

• 𝐷 ∈ Ω
𝑑

𝜖2 log
𝔼 𝜔 2

2

𝜖
 samples are enough for 𝜖 point-wise error 
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𝑘 𝑥, 𝑦 =  𝔼𝜔∽𝑝 cos 𝜔 𝑥 − 𝑦  



How to apply this to QKs?
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QKs are not shift invariant!

 𝑘𝑄 𝑥, 𝑦 = σ𝜔,𝜈∈Ω 𝑄𝜔𝜈𝑒𝑖(𝜔⋅𝑥−𝜈⋅𝑦) = 𝑧 𝑥 †𝑄𝑧 𝑦

            𝑧 𝑥 = 𝑒𝑖𝜔1⋅𝑥 , ⋯ , 𝑒𝑖𝜔 Ω ⋅𝑥 𝑇
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𝑄 is generally not diagonal!
RFF Approximation Does NOT WORK!

Diagonal 𝑄 → SI kernel 



Random Features for QKs 

Key Idea: Write 𝑘𝑄 𝑥, 𝑦 = 𝔼𝑁 𝜓† 𝑥, 𝑁 𝜓 𝑦, 𝑁  and estimate with 
sample mean

𝑘𝑄 𝑥, 𝑦 = σ𝑖 𝑣𝑖𝑧 𝑥 †𝑢𝑖𝑢𝑖
†𝑧 𝑦  
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𝑄 is Hermitian, unit-trace and positive semi-definite

Diagonal elements of 𝑄 
form a distribution 𝑞

Eigenvalues of 𝑄 form a 
distribution 𝑣

𝑘𝑄 𝑥, 𝑦 = 𝑧 𝑥 †𝑄𝑧 𝑦

𝜓 𝑦, 𝑁



Error Bounds

Error Bound: 𝐷 ∈ 𝑂
𝑑 Ω 2

𝜖2 log
𝔼𝑁 𝜁𝑁

2

𝜖
 samples are enough for 𝜖 

point-wise error

Computational Complexity of this approach
• FFT takes 𝒪( Ω log |Ω|) 

• EVD takes 𝒪(𝑝𝑜𝑙𝑦( Ω )) 

• Number of samples scale with Ω 2
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Bad News!!
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RFF-Dequantization 
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Can RFF feature map perform as well as quantum models in 
learning tasks? 



RFF-Dequantization 

𝜙𝐷,𝑝 𝑥 =
1

𝐷
cos 𝜔1 ⋅ 𝑥 , sin 𝜔1 ⋅ 𝑥 , ⋯ , cos 𝜔𝐷 ⋅ 𝑥 , sin 𝜔𝐷 ⋅ 𝑥 𝑇

20

Definition: A QML task is RFF-dequantized if there exists a 
distribution 𝑝 such that 𝜙𝐷,𝑝 𝑥  reaches true risks at most 𝜖 

greater than optimum true risk of the QML model, with 

𝒪 𝑝𝑜𝑙𝑦 𝑑, 𝜖−1 frequency and data samples. 



Summary

21

Problem QNN QK

Regression

 Alignment:
 𝑝𝜔 ∝  |𝑐𝜔

⋆ | . 
● Concentration:

 𝑝𝑚𝑎𝑥∈  𝒪(𝑝𝑜𝑙𝑦(𝑑))
  

 Alignment:  

𝑃
−1

𝑄
∞

∈  𝒪(𝑝𝑜𝑙𝑦(𝑑))

● Concentration:
 𝑝𝑚𝑎𝑥∈  𝒪(𝑝𝑜𝑙𝑦(𝑑))
■ Bounded RKHS norm: 

𝑓𝑞 𝑘𝑄
∈  𝒪(𝑝𝑜𝑙𝑦(𝑑))

SVM

 Alignment:
 𝑝𝜔 ∝  |𝑐𝜔

⋆ |
■ Bounded Fourier 

Sum: 
σ 𝑐𝜔 ∈ 𝒪(𝑝𝑜𝑙𝑦(𝑑))  

 Alignment: 

𝑝𝜔 =
1

𝐶
𝑞𝜔 

● Concentration: 

C = ෍

𝜔∈Ω

𝑞𝜔 ∈  𝒪(𝑝𝑜𝑙𝑦(𝑑))

■ Bounded RKHS norm: 

𝑓𝑞 𝑘𝑄
∈  𝒪(𝑝𝑜𝑙𝑦(𝑑))



Limitations of Theoretical Approach

• The optimal QNN function, is not obtainable. 

• Computational complexity of Fourier transform is high. 

• Optimal sampling distribution may be hard to sample from. 
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Does RFF with simple sampling strategies work as well? 

Theoretically dequantizable does not mean you can 
actually find the proper distribution.  



Numerical Experiments

• RFF-SVM: Sampling Strategies
• Uniform 

• Convolutional

• Truncated
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Numerical Experiments

• Data set from particle collisions

• Dimension 64 

• Comparison of sampling methods

24

Belis, Vasilis, et al. "Quantum anomaly detection in the latent space of proton 

collision events at the LHC." Communications Physics 7.1 (2024): 334.
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Belis, Vasilis, et al. "Quantum anomaly detection in the latent space of proton 

collision events at the LHC." Communications Physics 7.1 (2024): 334.



Numerical Experiment

• QK-SVM Settings: 
• Feature map

• QK evaluated for pairs of data 

• Shot noise added as a binomial RV
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Numerical Experiment

• Dimension 32

• 1000 training 

• 200 test 
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Conclusion 
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Alignment and concentration appear as sufficient conditions for QK methods 
and SVM 

Obtaining the optimal RFF sampling distribution is hard. 

But simple, task independent distributions such as convolutional and 
truncated may be good options. 



Thank you! ☺ 
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Questions?


	Slide 1: On Dequantization of Supervised Quantum Machine Leaning via Random Fourier Features
	Slide 2: TEAM 
	Slide 3:  Are Quantum Computers Useful for ML?
	Slide 4: Summary of Results
	Slide 5: Outline 
	Slide 6: Feature Maps  
	Slide 7: Feature Maps  
	Slide 8: Kernel Method 
	Slide 9: Quantum Neural Networks (QNNs)
	Slide 10: Quantum Kernels (QKs)
	Slide 11: Hamiltonian Encoding 
	Slide 12: Random Fourier Features
	Slide 13: Random Fourier Features
	Slide 14: How to apply this to QKs?
	Slide 15: QKs are not shift invariant!
	Slide 16: Random Features for QKs 
	Slide 17: Error Bounds
	Slide 18: Error Bounds
	Slide 19: RFF-Dequantization 
	Slide 20: RFF-Dequantization 
	Slide 21: Summary
	Slide 22: Limitations of Theoretical Approach
	Slide 23: Numerical Experiments
	Slide 24: Numerical Experiments
	Slide 25: Numerical Experiments
	Slide 26: Numerical Experiment
	Slide 27: Numerical Experiment
	Slide 28: Conclusion 
	Slide 29: Thank you!  

